SAP Documents
SAP.

Tuesday, June 3, 2008

Dot Net Interview Questions Answers - Vol 1

1. What is .NET Framework?
The .NET Framework has two main components: the common language runtime and the .NET Framework class library.You can think of the runtime as an agent that manages code at execution time, providing core services such as memory management, thread management, and remoting, while also enforcing strict type safety and other forms of code accuracy that ensure security and robustness.The class library, is a comprehensive, object-oriented collection of reusable types that you can use to develop applications ranging from traditional command-line or graphical user interface (GUI) applications to applications based on the latest innovations provided by ASP.NET, such as Web Forms and XML Web services.

2. What is CLR?
The CLS is simply a specification that defines the rules to support language integration in such a way that programs written in any language, yet can interoperate with one another, taking full advantage of inheritance, polymorphism, exceptions, and other features. These rules and the specification are documented in the ECMA proposed standard document, "Partition I Architecture", available here.

3. Is .NET a runtime service or a development platform?
Ans: It's both and actually a lot more. Microsoft .NET includes a new way of delivering software and services to businesses and consumers. A part of Microsoft.NET is the .NET Frameworks. The .NET frameworks SDK consists of two parts: the .NET common language runtime and the .NET class library. In addition, the SDK also includes command-line compilers for C#, C++, JScript, and VB. You use these compilers to build applications and components. These components require the runtime to execute so this is a development platform.

4. What are the new features of Framework 1.1 ?
1. Native Support for Developing Mobile Web Applications
2. Enable Execution of Windows Forms Assemblies Originating from the InternetAssemblies originating from the Internet zone—for example, Microsoft Windows® Forms controls embedded in an Internet-based Web page or Windows Forms assemblies hosted on an Internet Web server and loaded either through the Web browser or programmatically using the System.Reflection.Assembly.LoadFrom() method—now receive sufficient permission to execute in a semi-trusted manner. Default security policy has been changed so that assemblies assigned by the common language runtime (CLR) to the Internet zone code group now receive the constrained permissions associated with the Internet permission set. In the .NET Framework 1.0 Service Pack 1 and Service Pack 2, such applications received the permissions associated with the Nothing permission set and could not execute.
3. Enable Code Access Security for ASP.NET ApplicationsSystems administrators can now use code access security to further lock down the permissions granted to ASP.NET Web applications and Web services. Although the operating system account under which an application runs imposes security restrictions on the application, the code access security system of the CLR can enforce additional restrictions on selected application resources based on policies specified by systems administrators. You can use this feature in a shared server environment (such as an Internet service provider (ISP) hosting multiple Web applications on one server) to isolate separate applications from one another, as well as with stand-alone servers where you want applications to run with the minimum necessary privileges.
4. Native Support for Communicating with ODBC and Oracle Databases
5. Unified Programming Model for Smart Client Application DevelopmentThe Microsoft .NET Compact Framework brings the CLR, Windows Forms controls, and other .NET Framework features to small devices. The .NET Compact Framework supports a large subset of the .NET Framework class library optimized for small devices. Support for IPv6The .NET Framework 1.1 supports the emerging update to the Internet Protocol, commonly referred to as IP version 6, or simply IPv6. This protocol is designed to significantly increase the address space used to identify communication endpoints in the Internet to accommodate its ongoing growth.

5. What is MSIL, IL?
When compiling to managed code, the compiler translates your source code into Microsoft intermediate language (MSIL), which is a CPU-independent set of instructions that can be efficiently converted to native code. MSIL includes instructions for loading, storing, initializing, and calling methods on objects, as well as instructions for arithmetic and logical operations, control flow, direct memory access, exception handling, and other operations. Microsoft intermediate language (MSIL) is a language used as the output of a number of compilers and as the input to a just-in-time (JIT) compiler. The common language runtime includes a JIT compiler for converting MSIL to native code.

6. What is CTS?
The common type system defines how types are declared, used, and managed in the runtime, and is also an important part of the runtime's support for cross-language integration.The common type system supports two general categories of types, each of which is further divided into subcategories:
· Value types : Value types directly contain their data, and instances of value types are either allocated on the stack or allocated inline in a structure. Value types can be built-in (implemented by the runtime), user-defined, or enumerations.
· Reference types: Reference types store a reference to the value's memory address, and are allocated on the heap. Reference types can be self-describing types, pointer types, or interface types. The type of a reference type can be determined from values of self-describing types. Self-describing types are further split into arrays and class types. The class types are user-defined classes, boxed value types, and delegates.

7. What is JIT (just in time)? how it works?
Before Microsoft intermediate language (MSIL) can be executed, it must be converted by a .NET Framework just-in-time (JIT) compiler to native code, which is CPU-specific code that runs on the same computer architecture as the JIT compiler. Rather than using time and memory to convert all the MSIL in a portable executable (PE) file to native code, it converts the MSIL as it is needed during execution and stores the resulting native code so that it is accessible for subsequent calls.The runtime supplies another mode of compilation called install-time code generation. The install-time code generation mode converts MSIL to native code just as the regular JIT compiler does, but it converts larger units of code at a time, storing the resulting native code for use when the assembly is subsequently loaded and executed.As part of compiling MSIL to native code, code must pass a verification process unless an administrator has established a security policy that allows code to bypass verification. Verification examines MSIL and metadata to find out whether the code can be determined to be type safe, which means that it is known to access only the memory locations it is authorized to access.

8. What is strong name?
A name that consists of an assembly's identity—its simple text name, version number, and culture information (if provided)—strengthened by a public key and a digital signature generated over the assembly.

9. What is portable executable (PE)?
The file format defining the structure that all executable files (EXE) and Dynamic Link Libraries (DLL) must use to allow them to be loaded and executed by Windows. PE is derived from the Microsoft Common Object File Format (COFF). The EXE and DLL files created using the .NET Framework obey the PE/COFF formats and also add additional header and data sections to the files that are only used by the CLR. The specification for the PE/COFF file formats is available at http://www.microsoft.com/whdc/hwdev/hardware/pecoffdown.mspx

10. Which namespace is the base class for .net Class library?
Ans: system.object

11. What is Event - Delegate? clear syntax for writing a event delegate
The event keyword lets you specify a delegate that will be called upon the occurrence of some "event" in your code. The delegate can have one or more associated methods that will be called when your code indicates that the event has occurred. An event in one program can be made available to other programs that target the .NET Framework Common Language Runtime.
// keyword_delegate.cs
// delegate declaration
delegate void MyDelegate(int i);
class
{
public static void Main()
{
TakesADelegate(new MyDelegate(DelegateFunction));
}
public static void TakesADelegate(MyDelegate SomeFunction)
{
SomeFunction(21);
}
public static void DelegateFunction(int i)
{
System.Console.WriteLine("Called by delegate with number: {0}.", i);
}
}

12. What are object pooling and connection pooling and difference? Where do we set the Min and Max Pool size for connection pooling?
Object pooling is a COM+ service that enables you to reduce the overhead of creating each object from scratch. When an object is activated, it is pulled from the pool. When the object is deactivated, it is placed back into the pool to await the next request. You can configure object pooling by applying the ObjectPoolingAttribute attribute to a class that derives from the System.EnterpriseServices.ServicedComponent class. Object pooling lets you control the number of connections you use, as opposed to connection pooling, where you control the maximum number reached.Following are important differences between object pooling and connection pooling:
· Creation. When using connection pooling, creation is on the same thread, so if there is nothing in the pool, a connection is created on your behalf. With object pooling, the pool might decide to create a new object. However, if you have already reached your maximum, it instead gives you the next available object. This is crucial behavior when it takes a long time to create an object, but you do not use it for very long.
· Enforcement of minimums and maximums. This is not done in connection pooling. The maximum value in object pooling is very important when trying to scale your application. You might need to multiplex thousands of requests to just a few objects. (TPC/C benchmarks rely on this.)
COM+ object pooling is identical to what is used in .NET Framework managed SQL Client connection pooling. For example, creation is on a different thread and minimums and maximums are enforced.

13. What is Application Domain?
The primary purpose of the AppDomain is to isolate an application from other applications. Win32 processes provide isolation by having distinct memory address spaces. This is effective, but it is expensive and doesn't scale well. The .NET runtime enforces AppDomain isolation by keeping control over the use of memory - all memory in the AppDomain is managed by the .NET runtime, so the runtime can ensure that AppDomains do not access each other's memory.Objects in different application domains communicate either by transporting copies of objects across application domain boundaries, or by using a proxy to exchange messages.MarshalByRefObject is the base class for objects that communicate across application domain boundaries by exchanging messages using a proxy. Objects that do not inherit from MarshalByRefObject are implicitly marshal by value. When a remote application references a marshal by value object, a copy of the object is passed across application domain boundaries.
How does an AppDomain get created? AppDomains are usually created by hosts. Examples of hosts are the Windows Shell, ASP.NET and IE. When you run a .NET application from the command-line, the host is the Shell. The Shell creates a new AppDomain for every application.AppDomains can also be explicitly created by .NET applications. Here is a C# sample which creates an AppDomain, creates an instance of an object inside it, and then executes one of the object's methods. Note that you must name the executable 'appdomaintest.exe' for this code to work as-is.
using System;
using System.Runtime.Remoting;
public class CAppDomainInfo : MarshalByRefObject{ public string GetAppDomainInfo()
{
return "AppDomain = " + AppDomain.CurrentDomain.FriendlyName;
}
}
public class App
{
public static int Main()
{
AppDomain ad = AppDomain.CreateDomain( "Andy's new domain", null, null );
ObjectHandle oh = ad.CreateInstance( "appdomaintest", "CAppDomainInfo" );
CAppDomainInfo adInfo = (CAppDomainInfo)(oh.Unwrap());
string info = adInfo.GetAppDomainInfo();
Console.WriteLine( "AppDomain info: " + info );
return 0;
}
}

14. What is serialization in .NET? What are the ways to control serialization?
Serialization is the process of converting an object into a stream of bytes. Deserialization is the opposite process of creating an object from a stream of bytes. Serialization/Deserialization is mostly used to transport objects (e.g. during remoting), or to persist objects (e.g. to a file or database).Serialization can be defined as the process of storing the state of an object to a storage medium. During this process, the public and private fields of the object and the name of the class, including the assembly containing the class, are converted to a stream of bytes, which is then written to a data stream. When the object is subsequently deserialized, an exact clone of the original object is created.
· Binary serialization preserves type fidelity, which is useful for preserving the state of an object between different invocations of an application. For example, you can share an object between different applications by serializing it to the clipboard. You can serialize an object to a stream, disk, memory, over the network, and so forth. Remoting uses serialization to pass objects "by value" from one computer or application domain to another.
· XML serialization serializes only public properties and fields and does not preserve type fidelity. This is useful when you want to provide or consume data without restricting the application that uses the data. Because XML is an open standard, it is an attractive choice for sharing data across the Web. SOAP is an open standard, which makes it an attractive choice.
There are two separate mechanisms provided by the .NET class library - XmlSerializer and SoapFormatter/BinaryFormatter. Microsoft uses XmlSerializer for Web Services, and uses SoapFormatter/BinaryFormatter for remoting. Both are available for use in your own code.

15. Why do I get errors when I try to serialize a Hashtable?
XmlSerializer will refuse to serialize instances of any class that implements IDictionary, e.g. Hashtable. SoapFormatter and BinaryFormatter do not have this restriction.

No comments: