SAP Documents
SAP.

Saturday, June 14, 2008

Dot Net Interview Questions Answers - Vol 2

16. What are server controls?
ASP.NET server controls are components that run on the server and encapsulate user-interface and other related functionality. They are used in ASP.NET pages and in ASP.NET code-behind classes.

17. What is the difference between Web User Control and Web Custom Control?
Custom ControlsWeb custom controls are compiled components that run on the server and that encapsulate user-interface and other related functionality into reusable packages. They can include all the design-time features of standard ASP.NET server controls, including full support for Visual Studio design features such as the Properties window, the visual designer, and the Toolbox. There are several ways that you can create Web custom controls:
· You can compile a control that combines the functionality of two or more existing controls. For example, if you need a control that encapsulates a button and a text box, you can create it by compiling the existing controls together.
· If an existing server control almost meets your requirements but lacks some required features, you can customize the control by deriving from it and overriding its properties, methods, and events.
· If none of the existing Web server controls (or their combinations) meet your requirements, you can create a custom control by deriving from one of the base control classes. These classes provide all the basic functionality of Web server controls, so you can focus on programming the features you need.
If none of the existing ASP.NET server controls meet the specific requirements of your applications, you can create either a Web user control or a Web custom control that encapsulates the functionality you need. The main difference between the two controls lies in ease of creation vs. ease of use at design time.Web user controls are easy to make, but they can be less convenient to use in advanced scenarios. You develop Web user controls almost exactly the same way that you develop Web Forms pages. Like Web Forms, user controls can be created in the visual designer, they can be written with code separated from the HTML, and they can handle execution events. However, because Web user controls are compiled dynamically at run time they cannot be added to the Toolbox, and they are represented by a simple placeholder glyph when added to a page. This makes Web user controls harder to use if you are accustomed to full Visual Studio .NET design-time support, including the Properties window and Design view previews. Also, the only way to share the user control between applications is to put a separate copy in each application, which takes more maintenance if you make changes to the control.Web custom controls are compiled code, which makes them easier to use but more difficult to create; Web custom controls must be authored in code. Once you have created the control, however, you can add it to the Toolbox and display it in a visual designer with full Properties window support and all the other design-time features of ASP.NET server controls. In addition, you can install a single copy of the Web custom control in the global assembly cache and share it between applications, which makes maintenance easier.
Web user controls
Web custom controls
Easier to create
Harder to create
Limited support for consumers who use a visual design tool
Full visual design tool support for consumers
A separate copy of the control is required in each application
Only a single copy of the control is required, in the global assembly cache
Cannot be added to the Toolbox in Visual Studio
Can be added to the Toolbox in Visual Studio
Good for static layout
Good for dynamic layout

18. What is exception handling?
When an exception occurs, the system searches for the nearest catch clause that can handle the exception, as determined by the run-time type of the exception. First, the current method is searched for a lexically enclosing try statement, and the associated catch clauses of the try statement are considered in order. If that fails, the method that called the current method is searched for a lexically enclosing try statement that encloses the point of the call to the current method. This search continues until a catch clause is found that can handle the current exception, by naming an exception class that is of the same class, or a base class, of the run-time type of the exception being thrown. A catch clause that doesn't name an exception class can handle any exception.Once a matching catch clause is found, the system prepares to transfer control to the first statement of the catch clause. Before execution of the catch clause begins, the system first executes, in order, any finally clauses that were associated with try statements more nested that than the one that caught the exception. Exceptions that occur during destructor execution are worth special mention. If an exception occurs during destructor execution, and that exception is not caught, then the execution of that destructor is terminated and the destructor of the base class (if any) is called. If there is no base class (as in the case of the object type) or if there is no base class destructor, then the exception is discarded.

19. What is Assembly?
Assemblies are the building blocks of .NET Framework applications; they form the fundamental unit of deployment, version control, reuse, activation scoping, and security permissions. An assembly is a collection of types and resources that are built to work together and form a logical unit of functionality. An assembly provides the common language runtime with the information it needs to be aware of type implementations. To the runtime, a type does not exist outside the context of an assembly.Assemblies are a fundamental part of programming with the .NET Framework. An assembly performs the following functions:
· It contains code that the common language runtime executes. Microsoft intermediate language (MSIL) code in a portable executable (PE) file will not be executed if it does not have an associated assembly manifest. Note that each assembly can have only one entry point (that is, DllMain, WinMain, or Main).
· It forms a security boundary. An assembly is the unit at which permissions are requested and granted.
· It forms a type boundary. Every type's identity includes the name of the assembly in which it resides. A type called MyType loaded in the scope of one assembly is not the same as a type called MyType loaded in the scope of another assembly.
· It forms a reference scope boundary. The assembly's manifest contains assembly metadata that is used for resolving types and satisfying resource requests. It specifies the types and resources that are exposed outside the assembly. The manifest also enumerates other assemblies on which it depends.
· It forms a version boundary. The assembly is the smallest versionable unit in the common language runtime; all types and resources in the same assembly are versioned as a unit. The assembly's manifest describes the version dependencies you specify for any dependent assemblies.
· It forms a deployment unit. When an application starts, only the assemblies that the application initially calls must be present. Other assemblies, such as localization resources or assemblies containing utility classes, can be retrieved on demand. This allows applications to be kept simple and thin when first downloaded.
· It is the unit at which side-by-side execution is supported.
Assemblies can be static or dynamic. Static assemblies can include .NET Framework types (interfaces and classes), as well as resources for the assembly (bitmaps, JPEG files, resource files, and so on). Static assemblies are stored on disk in PE files. You can also use the .NET Framework to create dynamic assemblies, which are run directly from memory and are not saved to disk before execution. You can save dynamic assemblies to disk after they have executed.There are several ways to create assemblies. You can use development tools, such as Visual Studio .NET, that you have used in the past to create .dll or .exe files. You can use tools provided in the .NET Framework SDK to create assemblies with modules created in other development environments. You can also use common language runtime APIs, such as Reflection.Emit, to create dynamic assemblies.

20. What are the contents of assembly?In general, a static assembly can consist of four elements:
· The assembly manifest, which contains assembly metadata.
· Type metadata.
· Microsoft intermediate language (MSIL) code that implements the types.
· A set of resources.

21. What are the different types of assemblies?
Private, Public/Shared, Satellite

22. What is the difference between a private assembly and a shared assembly?
Location and visibility: A private assembly is normally used by a single application, and is stored in the application's directory, or a sub-directory beneath. A shared assembly is normally stored in the global assembly cache, which is a repository of assemblies maintained by the .NET runtime. Shared assemblies are usually libraries of code which many applications will find useful, e.g. the .NET framework classes.
Versioning: The runtime enforces versioning constraints only on shared assemblies, not on private assemblies.

23. What are Satellite Assemblies? How you will create this? How will you get the different language strings?
Satellite assemblies are often used to deploy language-specific resources for an application. These language-specific assemblies work in side-by-side execution because the application has a separate product ID for each language and installs satellite assemblies in a language-specific subdirectory for each language. When uninstalling, the application removes only the satellite assemblies associated with a given language and .NET Framework version. No core .NET Framework files are removed unless the last language for that .NET Framework version is being removed.(For example, English and Japanese editions of the .NET Framework version 1.1 share the same core files. The Japanese .NET Framework version 1.1 adds satellite assemblies with localized resources in a \ja subdirectory. An application that supports the .NET Framework version 1.1, regardless of its language, always uses the same core runtime files.)http://www.ondotnet.com/lpt/a/2637 **

24. What is Assembly manifest? what all details the assembly manifest will contain?
Every assembly, whether static or dynamic, contains a collection of data that describes how the elements in the assembly relate to each other. The assembly manifest contains this assembly metadata. An assembly manifest contains all the metadata needed to specify the assembly's version requirements and security identity, and all metadata needed to define the scope of the assembly and resolve references to resources and classes. The assembly manifest can be stored in either a PE file (an .exe or .dll) with Microsoft intermediate language (MSIL) code or in a standalone PE file that contains only assembly manifest information.It contains Assembly name, Version number, Culture, Strong name information, List of all files in the assembly, Type reference information, Information on referenced assemblies.

25. Difference between assembly manifest & metadata?
assembly manifest - An integral part of every assembly that renders the assembly self-describing. The assembly manifest contains the assembly's metadata. The manifest establishes the assembly identity, specifies the files that make up the assembly implementation, specifies the types and resources that make up the assembly, itemizes the compile-time dependencies on other assemblies, and specifies the set of permissions required for the assembly to run properly. This information is used at run time to resolve references, enforce version binding policy, and validate the integrity of loaded assemblies. The self-describing nature of assemblies also helps makes zero-impact install and XCOPY deployment feasible.
metadata - Information that describes every element managed by the common language runtime: an assembly, loadable file, type, method, and so on. This can include information required for debugging and garbage collection, as well as security attributes, marshaling data, extended class and member definitions, version binding, and other information required by the runtime.

26. What is Global Assembly Cache (GAC) and what is the purpose of it? (How to make an assembly to public? Steps) How more than one version of an assembly can keep in same place?
Each computer where the common language runtime is installed has a machine-wide code cache called the global assembly cache. The global assembly cache stores assemblies specifically designated to be shared by several applications on the computer. You should share assemblies by installing them into the global assembly cache only when you need to.Steps- Create a strong name using sn.exe tooleg: sn -k keyPair.snk- with in AssemblyInfo.cs add the generated file name eg: [assembly: AssemblyKeyFile("abc.snk")]- recompile project, then install it to GAC by eitherdrag & drop it to assembly folder (C:\WINDOWS\assembly OR C:\WINNT\assembly) (shfusion.dll tool)orgacutil -i abc.dll

27. What is Garbage Collection in .Net? Garbage collection process?
The process of transitively tracing through all pointers to actively used objects in order to locate all objects that can be referenced, and then arranging to reuse any heap memory that was not found during this trace. The common language runtime garbage collector also compacts the memory that is in use to reduce the working space needed for the heap.

28. Readonly vs. const?
A const field can only be initialized at the declaration of the field. A readonly field can be initialized either at the declaration or in a constructor. Therefore, readonly fields can have different values depending on the constructor used. Also, while a const field is a compile-time constant, the readonly field can be used for runtime constants, as in the following example:public static readonly uint l1 = (uint) DateTime.Now.Ticks;

29. What is Reflection in .NET? Namespace? How will you load an assembly which is not referenced by current assembly?
All .NET compilers produce metadata about the types defined in the modules they produce. This metadata is packaged along with the module (modules in turn are packaged together in assemblies), and can be accessed by a mechanism called reflection. The System.Reflection namespace contains classes that can be used to interrogate the types for a module/assembly.Using reflection to access .NET metadata is very similar to using ITypeLib/ITypeInfo to access type library data in COM, and it is used for similar purposes - e.g. determining data type sizes for marshaling data across context/process/machine boundaries.Reflection can also be used to dynamically invoke methods (see System.Type.InvokeMember), or even create types dynamically at run-time (see System.Reflection.Emit.TypeBuilder).

30. What is Custom attribute? How to create? If I'm having custom attribute in an assembly, how to say that name in the code?
The primary steps to properly design custom attribute classes are as follows:
Applying the AttributeUsageAttribute ([AttributeUsage(AttributeTargets.All, Inherited = false, AllowMultiple = true)])
Declaring the attribute. (class public class MyAttribute : System.Attribute { // . . . })
Declaring constructors (public MyAttribute(bool myvalue) { this.myvalue = myvalue; })Declaring properties
public bool MyPropertye. {
get {return this.myvalue;}
set {this.myvalue = value;}
}
The following example demonstrates the basic way of using reflection to get access to custom attributes.
class MainClass
{
public static void Main()
{
System.Reflection.MemberInfo info = typeof(MyClass);
object[] attributes = info.GetCustomAttributes();
for (int i = 0; i < attributes.Length; i ++)
{
System.Console.WriteLine(attributes[i]);
}
}
}

31. What is the managed and unmanaged code in .net?
The .NET Framework provides a run-time environment called the Common Language Runtime, which manages the execution of code and provides services that make the development process easier. Compilers and tools expose the runtime's functionality and enable you to write code that benefits from this managed execution environment. Code that you develop with a language compiler that targets the runtime is called managed code; it benefits from features such as cross-language integration, cross-language exception handling, enhanced security, versioning and deployment support, a simplified model for component interaction, and debugging and profiling services.

No comments: